The adaptive significance of temperature-dependent sex determination: experimental tests with a short-lived lizard.

نویسندگان

  • Daniel A Warner
  • Richard Shine
چکیده

Why is the sex of many reptiles determined by the temperatures that these animals experience during embryogenesis, rather than by their genes? The Charnov-Bull model suggests that temperature-dependent sex determination (TSD) can enhance maternal fitness relative to genotypic sex determination (GSD) if offspring traits affect fitness differently for sons versus daughters and nest temperatures either determine or predict those offspring traits. Although potential pathways for such effects have attracted much speculation, empirical tests largely have been precluded by logistical constraints (i.e., long life spans and late maturation of most TSD reptiles). We experimentally tested four differential fitness models within the Charnov-Bull framework, using a short-lived, early-maturing Australian lizard (Amphibolurus muricatus) with TSD. Eggs from wild-caught females were incubated at a range of thermal regimes, and the resultant hatchlings raised in large outdoor enclosures. We applied an aromatase inhibitor to half the eggs to override thermal effects on sex determination, thus decoupling sex and incubation temperature. Based on relationships between incubation temperatures, hatching dates, morphology, growth, and survival of hatchlings in their first season, we were able to reject three of the four differential fitness models. First, matching offspring sex to egg size was not plausible because the relationship between egg (offspring) size and fitness was similar in the two sexes. Second, sex differences in optimal incubation temperatures were not evident, because (1) although incubation temperature influenced offspring phenotypes and growth, it did so in similar ways in sons versus daughters, and (2) the relationship between phenotypic traits and fitness was similar in the two sexes, at least during preadult life. We were unable to reject a fourth model, in which TSD enhances offspring fitness by generating seasonal shifts in offspring sex ratio: that is, TSD allows overproduction of daughters (the sex likely to benefit most from early hatching) early in the nesting season. In keeping with this model, hatching early in the season massively enhanced body size at the beginning of the first winter, albeit with a significant decline in probability of survival. Thus, the timing of hatching is likely to influence reproductive success in this short-lived, early maturing species; and this effect may well differ between the sexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the evolution of environmental sex determination, especially in reptiles.

Environmental sex determination has been documented in a variety of organisms for many decades and the adaptive significance of this unusual sex-determining mechanism has been clarified empirically in most cases. In contrast, temperature-dependent sex determination (TSD) in amniote vertebrates, first noted 40 years ago in a lizard, has defied a general satisfactory evolutionary explanation desp...

متن کامل

Sex allocation based on relative and absolute condition.

Traditional models predict that organisms should allocate to sex based on their condition relative to the condition of their competitors, tracking shifts in mean condition in fluctuating environments, and maintaining an equilibrium sex ratio. In contrast, when individuals are constrained to define their condition absolutely, environmental fluctuations induce fluctuating sex ratios and the evolu...

متن کامل

Interactions among thermal parameters determine offspring sex under temperature-dependent sex determination.

In many animals, temperatures experienced by developing embryos determine offspring sex (e.g. temperature-dependent sex determination, TSD), but most studies focus strictly on the effects of mean temperature, with little emphasis on the importance of thermal fluctuations. In the jacky dragon (Amphibolurus muricatus), an Australian lizard with TSD, data from nests in the field demonstrate that o...

متن کامل

Different optimal offspring sizes for sons versus daughters may favor the evolution of temperature-dependent sex determination in viviparous lizards.

Temperature-dependent sex determination (TSD) has evolved independently in at least two lineages of viviparous Australian scincid lizards, but its adaptive significance remains unclear. We studied a montane lizard species (Eulamprus heatwolei) with TSD. Our data suggest that mothers can modify the body sizes of their offspring by selecting specific thermal regimes during pregnancy (mothers with...

متن کامل

Windows of embryonic sexual lability in two lizard species with environmental sex determination.

Temperature-dependent sex determination (TSD) occurs in all major reptile lineages, but the selective forces and physiological mechanisms that link sex to incubation temperature may differ among and within those groups. Different models for TSD evolution make different predictions about when offspring sex will respond to environmental cues. Although TSD has evolved in several lizard lineages, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 59 10  شماره 

صفحات  -

تاریخ انتشار 2005